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The purpose of this note it to prove an identity from linear algebra called “Jacobi’s
Identity” and use it to give a description in coordinates of the Laplace-Beltrami operator.
Recall that the Adjugate Matrix to a matrix g is defined by

g Adj(g) = det(g).

If g is invertible, this takes the pleasant form

Adj(g) = g−1 det(g).

IdentityMn(C), the set of n×nmatrices withCn2 . Then det : Mn(C)→ C is a differentiable
map. Jacobi’s formula lets one compute the derivative of this map. For simplicity of notation
we state the identity for differentiable families.

Theorem 1 (Jacobi’s Identity). Let g(t) : R→Mn(C) be differentiable. Then

d

dt
det(g(t)) = tr

(
Adj(g(t))

d

dt
g(t)

)
.

Proof. To avoid difficult computations, we instead use a bit of analysis.
We first prove this for a very special family and a very speial t, t = 0 and g(t) = tg + 1.

Then, either by direct computation or putting g into a normal form, we see that

d

dt
det(g(t))

∣∣∣∣
t=0

= tr g = tr (Adj(1)g) .

Now we prove the formula under the assumption that g(t) is invertible at t = t0, which
we assume without loss of generality to be t0 = 0. Since det is differentiable and g(t) is
differentiable,

g(t) = g(0) + tg′(0) + o(t)

and so (for instance by the mean value theorem)

det(g(t))− det(g(0) + tg′(0)) ∈ o(t).

Thus, from the definition of the derivative,

d

dt
det g(t)

∣∣∣∣
t=0

= lim
t→0

det g(t)− det g(0)

t
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= lim
t→0

det(g(0) + tg′(0))− det(g(0))

t
+ o(1)

= lim
t→0

det(g(0) + tg′(0))− det(g(0))

t
.

We may rewrite

det(g(0) + tg′(0)) = det(g(0)) det(1 + tg−1(0)g′(0)),

and use the special case to deduce that

d

dt
det(g(0) + tg′(0))

∣∣∣∣
t=0

= det(g(0)) tr(g−1(0)g′(0)) = tr(det(g(0))g−1(0)g′(0)),

which is what we want since Adj(g(0) = det(g(0))g−1(0).
But what if g(0) is not invertible? Consider instead the family for s > 0 defined by

gs(t) = s + g(t).

One easily sees that gs(0) is invertible for s small. Either one can use a normal form, or
notice that det(s + g(0)) is a polynomial, so has isolated zeroes. So,

d

dt
det gs(t)

∣∣∣∣
t=0

= tr(Adj(gs(0))g′s(0)).

Certainly gs(t), g
′
s(t)→ g(t), g′(t), respectively, uniformly in t. Since tr,Adj, and multiplica-

tion are continuous, the right-hand side converges to

tr(Adj(g(0)g′(0)).

Since det is smooth, the chain rule implies that (det gs)
′ → (det g)′ uniformly (at least on

compact sets in Mn(C)). In particular, the left-hand side converges to

d

dt
det g(t)

∣∣∣∣
t=0

.

This establishes the formula for t = 0, and hence for all t since the choice t = 0 was
arbitrary.

We have the immediate useful Corollary.1

Corollary 2. Let U ⊆ Rn be open, and let g : U → GL(n,C) ⊆ Mn(C) be differentiable.2.
Write the components of g as gij, and the components of its inverse as gij. Then

gij∂kgij = ∂kgijg
ij =

∂k det g

det g
= ∂k log(| det g|).

1From here on, we will employ the Einstein summation convention, summing over repeated indices as
long as one of the pair is “raised” and the other is “lowered.”

2One may interpret this as either a map into a Lie group, or simply a differentiable map whose image
consists only of invertible matrices
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Proof. Fix x ∈ U and consider the family h(t) = g(x+ tek), where ek is the kth basis vector.
Then

h′(0) = ∂kg(x)

and
(deth)′(0) = ∂k(det g)(x).

By the Jacobi Formula,

(deth)′(0) = tr(Adj(h(0))h′(0)) = det(g(x)) tr(g−1(x)∂kg(x)) = det(g(x))gij∂kgij.

The identity for the reversed order follows from the fact that tr(AB) = tr(BA), which we
apply before the last equality.

The application is as follows. Let M be a Riemannian (or pseudo-Riemannian) Manifold,
with metric g and Levi-Civita connection D. Define the divergence of a vector field V by

div(V ) = tr(Y 7→ DY V )

and the Laplacian of a smooth function u by

∆u = div(gradu).

Choose local coordinates {x1, . . . , xn} for M . Write the components of a vector field V as
V = V i∂i, and the components of g by

g(∂i, ∂j) = gij.

Write gij for the components of the inverse.

Proposition 3. With the above definitions,

div(V ) =
1√
| det g|

∂i(
√
| det g|V i)

and
∆u =

1√
| det g|

∂i(
√
| det g|gij∂ju).

Proof. By definition div(V ) = DiV
i, where DiV

i = (DiV )i denotes the ith component of
DiV (as opposed to the connection applied to the smooth function V i). Set Γk

ij to be the
Christoffel symbols of the connection. Then

div(V ) = ∂iV
i + Γi

ijV
j.

We know that
Γi
ij =

1

2

(
gik∂igik − gik∂kgij + gik∂jgik

)
.
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Since the sum runs over all i, k the symmetry of g and g−1 means that the first two terms
cancel, and so by the Corollary

Γi
ij =

1

2
gik∂jgik = ∂j log

√
| det g|.

Relabelling indices, we then have that

div(V ) = ∂iV
i + ∂i log

√
| det g|V i = DiV

i +
∂i
√
| det g|√
| det g|

V i =
1√
| det g|

∂i(
√
| det g|V i),

which is the desired formula.
In coordinates, it is clear that we have

gradu = gij∂ju∂i,

since
gijg

ki∂kuV
j = g(gradu, V ) = du(V ) = ∂juV

j.

Thus,

∆u =
1√
| det g|

∂i(
√
| det g|gij∂ju).
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